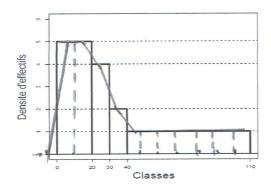
REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE.

ECOLE SUPERIEURE DES SCIENCES APPLIQUEES _T L E M C E N_

ور ارة التعليم العالى والبحث الطمى ----- العالى العلوم التطبيقيسة المدرسة العليا في العلوم التطبيقيسة -تلمسان.

Le: 23/11/2016


Corrigé du devoir semestriel de statistiques

Questions de cours: (3pts)

- 1. La médiane est l'abscisse du point d'intersection des deux courbes cumulatives. Le mode est l'abscisse du point d'inflexion de la courbe cumulative croissante.
- 2. Si la variable statistique est qualitative nominale on ne peut pas parler de sa valeur médiane car les valeurs de cette variable ne peuvent pas être ordonnées.
- 3. Le but d'étudier une série statistique bivariée est:
 - Analyser les valeurs de la variable X d'une part et les valeurs de la variable Y d'autre part.
 - Analyser le lien entre les valeurs de X et celle de Y.

Exercice1: (09pts)

X: "Temps de trajet domicile/ travail"

- 1. Polygone d'effectifs:
- 2. La distribution ainsi représentée est asymétrique à gauche.

7.3

3. Le tableau des effectifs:

les effectifs n_i sont donnés par la relation:

$$h_i = \frac{n_i}{a_i}$$

classes	h_i	a_i	n_i	c_i	$n_i \times c_i$	f_i	$F_i\uparrow$
[0, 20[5	20	100	10	1000	10/23	10/23 = 0.43
[20, 30[4	10	40	25	1000	4/23	14/23 = 0.61
[30, 40[2	10	20	35	700	2/23	16/23
[40, 110[1	70	70	75	5250	7/23	1
Total	/	/	230	/	7950	1	/

• La moyenne arithmétique:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} n_i \times c_i = \frac{1}{230} \times 7950 = 34.56mn$$

• La médiane: elle se trouve entre les deux bornes supérieure 20 et 30. On appliquant le théorème de Thalès on obtient:

$$\frac{Me - 20}{30 - 20} = \frac{0.5 - 0.43}{0.61 - 0.43}$$

d'où

$$Me = 20 + 0.39 \times 10 = 23.9mn$$

• Le mode: ici on a deux classes modales [0, 10] et [10, 20] qui sont adjacentes, donc il va avoir deux modes. Montrons qu'ils sont égals.

pour la classe [0, 10]

$$Mo_1 = L + \frac{E_1}{E_1 + E_2} \times a = 0 + \frac{100}{100 + 0} \times 10 = 10$$

Pour la classe [10, 20]

$$Mo_2 = L + \frac{E_1}{E_1 + E_2} \times a = 10 + \frac{0}{0 + 60} \times 10 = 10$$

Donc il existe un seul mode Mo qui est égal à 10mn

4. On remarque que

$$Mo < Me < \overline{X}$$

donc la distribution est bien asymétrique à gauche

Exercice 2:(08pts)

1. X: "la distance parcourue par des élèves" \longrightarrow variable qualitative ordinale Y: "niveau scolaire" \longrightarrow variable qualitative ordinale.

2. Le tableau statistique:

$X \setminus Y$	faible	moyen	élevé	$n_{i.}$
courte	23	25	79	127
moyenne	83	85	55	223
longue	102	21	27	150
$n_{.i}$	208	131	161	500

3. Les distributions marginales des effectifs:

Pour X:	$modalit\'es$	courte	moyenne	longue	Total			
	$n_{i.}$	127	223	150	500			
	modalités faible mouen élevé Total							

	$modalit\'es$	faible	moyen	élevé	Total
Pour Y:	$n_{.j}$	208	131	161	500
	$f_{.j}$	0.416	0.262	0.322	1

4. La distribution conditionnelle d'effectifs de Y sachant que X="longue"

Y/X = "longue"	faible	moyen	élevé	Total
$n_{j/i}$	102	21	27	150
$f_{j/i}$	0.68	0.14	0.18	1
$B_i = f_{i/i} \times 360^{\circ}$	244.8	50.4	64.8	360°

5. On a $f_{j/i} \neq f_{.j}$ donc les variables statistique X et Y ne sont pas indépendantes. ou bien:

$$n_{11} = 23 \neq \frac{n_{1.} \times n_{.1}}{n} = \frac{127 \times 208}{500}$$

on conclu que le niveau scolaire des élèves dépend de la distance par courue .

6. La représentation graphique avec un diagramme circulaire

Distribution du mireeur scolaire quand la distance par convue est longue