Partie 2 Optique géométrique

Sidi M. Khefif

Département de Physique EPST Tlemcen

13 janvier 2013

Chapitre 1: Introduction

<u>Définition</u>

L'optique est la science de la lumière.

1. Jalons historiques

- ▶ 1° et 2° siècle ap. J.C. : L'étude de la lumière a commencé avec les Grecs de l'école d'Alexandrie en Egypte : Euclide, Héron l'Ancien, Ptolémée.
- ► Euclide est le 1^{er} à utiliser le terme *optique* dans son livre sur la perception visuelle.
- 11° siècle : Alhazen (إبن الهَيثُم dans كِتَابُ المَنَاظِر a établi les fondements de l'optique moderne.
- ▶ 11° siècle : Al-Biruni (اَلبَيرُونِي) a découvert que la vitesse de la lumière est supérieure à celle du son.

- ▶ 17° siècle : Snell et Descartes ont découvert la loi de la réfraction.
- ▶ 1637 : Descartes a défendu la nature corpusculaire de la lumière (La Dioptrique).
- ▶ 1678 : Huygens a opté pour la nature ondulatoire de la lumière (Traité de la Lumière).
- ▶ 1704 : Newton a défendu la nature corpusculaire et mécaniste de la lumière (Traité d'Optique).
- ▶ 1802 : Young a réalisé la 1^{re} expérience d'interférence.
- ▶ 1870 : Maxwell a établi que les ondes lumineuses sont des ondes électromagnétiques (Traité d'Électromagnétisme).
- ▶ 1905 : Einstein a postulé que la vitesse de la lumière dans le vide est une limite supérieure à toutes les vitesses, l'hypothèse du photon et les lois d'absorbtion et d'émission : avènement de la théorie quantique.

2. Premières applications

- ▶ 1600 : Hans et Jansen ont inventé le 1er microscope.
- ▶ 1609 : Gallilée a inventé la 1^{re} lunette à réfraction.
- ▶ 1611 : Kepler a également construit une lunette à réfraction.
- ▶ 1676 : Römer a mis en évidence la vitesse limite de la lumière.
- ▶ 1804 : Wollaston a utilisé des lentilles pour corriger la vue.
- ▶ 1960 : Maiman a mis en place le 1er LASER.
- ▶ 1963 : Martins a inventé le premier endoscope à base de fibre optique.
- ▶ 2012 : Capasso *et al.* ont fabriqué la 1^{re} lentille ultra-plate dépourvue de toute distorsion.

3. Branches de l'optique

- ▶ L'optique *géométrique*.
- L'optique *ondulatoire (physique)*.
- L'optique quantique.

3.a. L'Optique géométrique

- ▶ Elle fait l'objet de notre cours.
- ► Elle a été développée entre le 11° et le 18° siècle.
- Elle étudie la propagation de la lumière et la formation des images.
- Elle utilise la notion de *rayon lumineux*, les lois de la propagation réctiligne, de réflexion et de réfraction.
- Son champ d'application est très vaste : L'observation des corps très petits (microscopes), très grands (télescopes), très rapides (caméras ultra-rapides), médecine (endoscopes), télécommunicatons (fibres optiques), topographie, . . .

3.b. L'Optique ondulatoire

- ▶ Elle a été développée au cours du 19e siècle.
- Elle étudie la propagation de la lumière comme une onde.
- Elle utilise les notions d'interférence, de diffraction, de diffusion, ...
- ► Elle fait l'objet du module *Physique* 4 (2° année).
- Les mesures de très haute précision (doppler), spectroscopie, analyse chimique, astrophysique, métallurgie, ...

3.c. L'Optique quantique

- ► Elle a été développée au cours du 20° siècle.
- Elle étudie l'interaction du rayonnement avec la matière.
- Développement des MASER, LASER, l'holographie, les images 3D, ...

4. Principes de base de l'optique géométrique

4.1 Nature de la lumière

- Depuis les travaux de Maxwell, on sait que la lumière est une *onde* électromagnétique.
- Einstein a démontré, également, que la lumière est un ensemble de particules sans masses appelés *photons*.
- Ainsi, la lumière est une onde-particule.

4.2 Propriétés de la lumière

- Une lumière monochromatique (une seule couleur) se caractérise par trois nombres :
 - La fréquence ν (Hz). Elle représente la fréquence de variation du champ électrique,
 - La période T (s), avec $T = \frac{1}{\nu}$,
 - La longueur d'onde λ (m), avec $\lambda = \frac{c}{\nu}$, où c est la célérité de la lumière dans le vide.
- La lumière *visible* comprend les longueurs d'ondes allant de 360 nm (violet) et 830 nm (rouge).
- ► Cette gamme de longueurs d'ondes n'est qu'une infime partie du spectre électromagnétique.

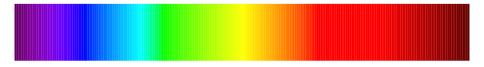


FIGURE: Spectre de la lumière visible

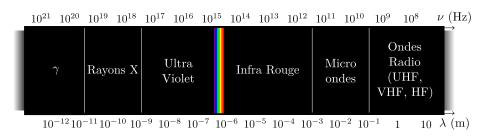


FIGURE: Spectre électromagnétique

Attention!

On caractérise une onde lumineuse (une couleur) par sa fréquence ou par sa longueur d'onde dans le vide.

4.2 Propriétés de la lumière (suite)

- ▶ Une onde électromagnétique, et donc la lumière, se propage dans le vide à la vitesse $c = 299.792.458 \text{ m s}^{-1}$.
- La mesure expérimentale la plus connue de c est celle réalisée par H. Fizeau en 1849.
- Dans tout autre milieux, la lumière se propage moins vite que dans le vide (v < c).
- ▶ On définit, alors, l'indice de réfraction (indice optique) du milieu par $n = \frac{c}{n} \ge 1$.
- Quelques indice de réfraction :

 $n_{\text{vide}} = 1$, $n_{\text{eau}} = 1.3$, $n_{\text{verre}} = 1.5$, $n_{\text{diamant}} = 2.42$.

4.2 Propriétés de la lumière (suite)

▶ Attention : l'indice de réfraction dépend de la couleur de la lumière (fréquence). Les valeurs de n sont souvent données par rapport à une (seule) couleur de référence (jaune du doublet du sodium).

$$\lambda = \frac{v}{\nu} = \frac{v}{c} \frac{c}{\nu} = \frac{\lambda_0}{n}.$$

- On peut dire que plus la fréquence est grande (plus la longueur d'onde est petite), plus la vitesse de propagation est faible, et donc, plus l'indice du milieu est grand.
- À noter que pour un milieu transparent *inhomogène*, l'indice n dépend du point de l'espace considéré (mirages).

4.3 Éléments de base de l'optique géométrique

- ▶ La notion de base de l'optique géométrique est le rayon lumineux : C'est la ligne suivant laquelle l'énergie lumineuse se propage.
- ▶ Dans les milieux homogènes, la lumière se propage en *lignes droites* à partir de la *source* jusqu'au *récepteur*.
- En passant d'un milieu transparent à un autre, la propagation de la lumière n'est pas rectiligne : elle subit une réfraction.
- ▶ La propagation n'est pas rectiligne, si la lumière passe par de petites ouvertures, si elle rencontre de petits obstacles ou même si elle se propage près du bord d'un grand obstacle : elle subit une diffraction.
- Les fluctuations locales de température, de densité ou de composition chimique sont sources d'hétérogénéités induisant la *diffusion* de la lumière dans toutes les directions : vapeur, brouillard, nuages, couleur bleue du ciel, . . .
- Nous admettons, également, que les rayons lumineux sont indépendants. La direction d'un rayon n'est pas affectée par celle des autres rayons.

4.3 Éléments de base de l'optique géométrique (Suite)

Hypothèse de travail:

À la limite où la longueur d'onde est beaucoup plus petite que les distances caractéristiques du système, les lois de l'optique géométrique sont alors valables.

Références:

- ▶ Optique, S. Houard, éditions de boeck, 2011.
- Optique géométrique, T. Bécherrawy, éditions de boeck, 2006.
- ► Geometrical and Trigonometric Optics, E. L. Dereniak, T. D. Dereniak, Cambrige University Press, 2008.
- physagreg.fr
- ▶ Images sous licence Creative Commons 3.0 🔀

