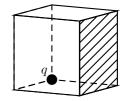
# ÉCOLE PRÉPARATOIRE EN SCIENCES ET TECHNIQUES DE TLEMCEN


# Département de Physique

# PHYSIQUE II - Série TD Nº 03

14 mars 2013

#### Exercice 01

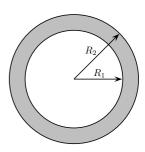
Une charge ponctuelle q est placée à l'arrière-coin d'un cube. Quel est le flux du champ  $\overrightarrow{E}$  à travers la facette hachurée? Voir figure ci-contre.



### Exercice 02

Le noyau de l'atome d'uranium, de rayon  $R=7.4\times 10^{-15}$  m, contient 92 protons et peut être représenté par une sphère symétrique chargée.

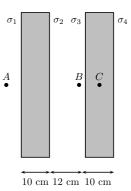
- 1. Quel est le champ électrique produit par ce noyau à l'extérieur de sa surface?
- 2. Quelle est la norme du champ électrique subi par les électrons qui se trouvent à une distance de  $1 \times 10^{-10}$  m?
- 3. L'ensemble des électrons forme une coquille sphérique uniforme de charge négative. Quel est le champ total produit par les électrons au niveau du noyau?


#### Exercice 03

Une coquille sphérique creuse est caractérisée par une densité de charge

$$ho(r)=rac{k}{r^2}$$

dans la région  $R_1 \leq r \leq R_2$ , où k est une constante.


Calculer le champ électrique dans les régions (i)  $r < R_1$ , (ii)  $R_1 < r < R_2$ , (iii)  $r > R_2$ . Représenter la fonction E(r).



#### Exercice 04

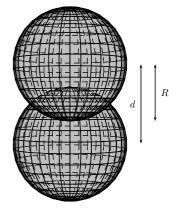
Un plan infini est doté d'une densité de charge surfacique uniforme  $\sigma$ .

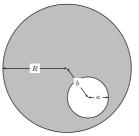
- 1. En utilisant le théorème de Gauss, calculer le champ électrique qu'il produit.
- 2. Retrouver ce même résultat en exploitant l'expression du champ produit par un disque chargé.
- 3. Application: Deux très grandes plaques isolantes (plastique), de même épaisseur d=10 cm, ont des densités de charge uniformes  $\sigma_1=-6~\mu\text{C/m}^2,~\sigma_2=+5~\mu\text{C/m}^2,~\sigma_3=+2~\mu\text{C/m}^2$  et  $\sigma_4=+4~\mu\text{C/m}^2$  sur leurs surfaces, comme indiqué sur la figure. Calculer la norme et la direction du champ électrique aux points A,~B et C tels que AB=25.75 cm et BC=6.25 cm.



#### Exercice 05

Un tube conducteur infiniment long, de rayon R, a une densité de charge surfacique  $\sigma$ .


- 1. Quelle est la densité de charge linéique  $\lambda$  du cylindre en fonction de R et  $\sigma$ ?
- 2. Calculer en fonction de  $\sigma$  le champ électrique produit par ce cylindre à une distance r>R de son axe.
- 3. Exprimer le résultat précédent en focntion de  $\lambda$  et montrer que le champ électrique est le même que dans le cas où toute la charge se trouvait sur l'axe. Discuter ce résulat.


#### Exercice 06

Deux sphères de même rayon R, de densité de charges respectives  $+\rho$ et  $-\rho$ , se chevauchent partiellement. La distance séparant leurs centres est d < 2R. Calculer le champ électrique dans la zone de chevauchement.

#### Exercice 07

Une sphère isolante de rayon R a un trou sphérique de rayon a à l'intérieur de son volume, centré à la distance b du centre de la sphère, où a < b < R. La partie pleine de la sphère a une densité de charge volumique  $\rho$ . Calculer le champ électrique à l'intérieur du trou. Voir figure ci-dessous





#### Exercice 08

Lequel des champs suivants ne peut être un champ électrique?

- 1.  $\overrightarrow{E} = k(xy\hat{\imath} + 2yz\hat{\jmath} + 3xz\hat{k})$ ;
- 2.  $\overrightarrow{E} = k(y^2\hat{\imath} + (2xy + z^2)\hat{\jmath} + 2yz\hat{k});$

où k est une constante ayant des unités appropriées. Dans le cas possible, et en utilisant l'origine comme votre point de référence, calculer le potentiel électrique correspondant. Vérifier votre résultat en calculant  $\nabla V$ .

#### Exercice 09

Calculer le potentiel électrique à l'intérieur et à l'extérieur d'une sphère de rayon R et de charge totale Q. En choisissant l'infini comme point de référence, calculer  $\overrightarrow{\nabla} V$  dans chaque région. Représenter E(r) et V(r) sur le même graphique.

#### Exercice 10

Dans un accélérateur linéaire de particules, un positron (charge  $+e = 1.6 \times 10^{-19}$  C) se déplace en ligne droite d'un point a à un point b en parcourant une distance totale d=0.5 m. Le champ électrique est uniforme le long de cette distance  $E=1.5\times 10^{17}~{\rm V/m}=1.5\times 10^{17}~{\rm N/C}.$ 

- 1. Calculer la force que subit le positron.
- 2. Quel est le travail effectué par le champ électrique.
- 3. Calculer la différence de potentiel  $V_a V_b$ .

#### Exercice 11

Quel est le travail nécessaire à l'assemblage d'un noyau formé de trois protons (le lithium Li) modélisé par un triangle équilatéral de côté  $2 \times 10^{-15}$  m, les protons étant placés sur les sommets du triangle.

#### Exercice 12

On considère une sphère de rayon R et de charge totale Q uniformément distribuée sur son volume. Calculer l'énergie nécessaire à l'assemblage de cette charge en accumulant des charges infinitésimales ramenées depuis l'infini. Cette énergie est appelée la self-énergie de cette distribution de charge. Astuce : Après avoir mis une charge q dans une sphère de rayon r, quelle est la quantité d'énergie nécessaire à l'ajout d'une coquille sphérique d'épaisseur dr et de charge dq? Intégrer ensuite pour obtenir l'énergie totale.